Matematika

Pertanyaan

jika diketahui persamaan 4log(x-3) + 4 log (x-3)=1, maka nilai x yang memenuhi persamaan tersebut adalah

2 Jawaban

  • ⁴log(x - 3) + ⁴log(x - 3) = 1
    ⁴log(x - 3) + ⁴log(x - 3) = ⁴log4
    ⁴log(x - 3)(x - 3) = ⁴log4 --------------->> (coret "⁴log")
    (x - 3)(x - 3) = 4
    x² - 3x - 3x + 9 = 4
    x² - 6x + 5 = 0
    (x - 5)(x - 1) = 0
    x = 5 atau x = 1
  • ^4log(x-3) + ^4log(x-3) = 1
    log(x-3)/log 4 + log(x-3)/log 4 = 1
    (log(x-3) + log(x-3))/log 4 = 1
    log(x-3) + log(x-3) = 1(log 4)
    log[(x-3)(x-3)] = log 4
    (x-3)(x-3) = 4
    => x^2 - 6x + 9 = 4
    => x^2 - 6x + 9 - 4 = 0
    => x^2 - 6x + 5 = 0
    => (x - 5)(x - 1) = 0
    => x - 5 = 0 atau x - 1 = 0
    => x = 5 atau x = 1
    Jadi nilai x yang memenuhi persamaan tersebut adalah 1 dan 5

Pertanyaan Lainnya