Matematika

Pertanyaan

QUIZ MATH

PERATURAN
1). Jawablah pertanyaan dengan menggunakan cara lengkap dan jelas
2). Jangan menjawab tanpa cara dan spam
3). Jika ada yang kurang jelas, bisa ditanyakan dikolom komentar bukan dikolom jawaban
4). Jawaban dengan tingkat kesalahan < 40% akan diminta koreksi dan > 40% akan dihapus untuk memberi kesempatan user lain

MATERI
Aljabar + Trigonometri

PERTANYAAN
Lihat Gambar !

Selamat Mencoba - GuruMIPA
GOOD LUCK!!!
QUIZ MATH PERATURAN 1). Jawablah pertanyaan dengan menggunakan cara lengkap dan jelas 2). Jangan menjawab tanpa cara dan spam 3). Jika ada yang kurang jelas, bi

2 Jawaban

  • [tex]Siapkan Bahan :\\ x^{3} + \frac{1}{x^{3}} = (x + \frac{1}{x})^{3} - 3 . x . \frac{1}{x} . (x + \frac{1}{x}) \\ x^{3} + \frac{1}{x^{3}} = (2 cos 12)^{3} - 3 (2 cos 12) \\ x^{3} + \frac{1}{x^{3}} = 8 cos^{3}12 - 6 cos 12 \\ \\ x^{5} + \frac{1}{x^{5}} = (x + \frac{1}{x})^{5} - 5 (x^{3} + \frac{1}{x^{3}}) - 10 (x + \frac{1}{x}) \\ x^{5} + \frac{1}{x^{5}} = (2 cos 12)^{5} - 5 (8 cos^{3} 12-6cos12) - 10 (2 cos 12) \\ x^{5} + \frac{1}{x^{5}} = 32 cos^{5}12 - 40 cos^{3}12 + 30cos12 - 20 cos12\\ [/tex]
    [tex]x^{5} + \frac{1}{x^{5}} = 32 cos^{5} 12 - 40 cos^{3} 12 + 10 cos 12[/tex]

    32 cos⁵12° = 8 (2 cos² 12°)² cos 12°
    RUMUS : cos 2x = 2cos²x - 1
                      = 8 (cos 24° + 1)² cos 12°
                      = 8 (cos² 24° + 2 cos 24° + 1) cos 12°
                      = 4 (2 cos² 24° + 4 cos 24° + 2) cos 12°
                      = 4 (cos 48° + 1 + 4 cos 24° + 2) cos 12°
                      = 4 (cos 48° + 4 cos 24° + 3) cos 12°
                      = 4 cos 12° cos 48° + 16 cos 12° cos 24° + 12 cos 12°
                      = 2 (2 cos 12° cos 48°) + 8 (2 cos 12° cos 24°) + 12 cos 12° 
    RUMUS : 2 cos x cos y = cos (x + y) + cos (x - y)
                      = 2 (cos 60° + cos (-36°)) + 8 (cos 36° + cos (-12°)) + 12 cos 12°
    INGAT : cos (-α) = cos α
                      = 1 + 2 cos 36° + 8 cos 36° + 8 cos 12° + 12 cos 12°
                      = 10 cos 36° + 20 cos 12° + 1

    40 cos³12° = 20 . 2 cos² 12° . cos 12°
    RUMUS : cos 2x = 2cos²x - 1 -_-
                      = 20 (cos 24° + 1) . cos 12°
                      = 20 cos 12° cos 24° + 20 cos 12°
                      = 10 (2 cos 12° cos 24°) + 20 cos 12°
    RUMUS : 2 cos x cos y = cos (x + y) + cos (x - y) -_- -_-
                      = 10 (cos 36° + cos (-12°)) + 20 cos 12°
    INGAT : cos (-α) = cos α -_- -_- -_-
                      = 10 cos 36° + 10 cos 12° + 20 cos 12°
                      = 10 cos 36° + 30 cos 12°

    [tex]x^{5} + \frac{1}{x^{5}} = 32 cos^{5} 12 - 40 cos^{3} 12 + 10 cos 12[/tex]
    = 10 cos 36° + 20 cos 12° + 1 - (10 cos 36° + 30 cos 12°) + 10 cos 12°
    = 10 cos 36° + 20 cos 12° + 1 - 10 cos 36° - 30 cos 12° + 10 cos 12°
    = 10 cos 36° - 10 cos 36° + 30 cos 12° - 30 cos 12° + 1
    = 1 (A) ⇒ Jawab -_- -_- -_- -_-                                  
  • By complex number, we have :
    [tex] (cos\theta + isin\theta) ^5 = cos^5 \theta + i5cos^4\theta.sin\theta - 10cos^3\theta.sin^2\theta - i10cos^2\theta.sin^3\theta + 5cos\theta.sin^4\theta + isin^5\theta [/tex]

    [tex] (cos\theta + isin\theta)^5 = cos^5 \theta - 10cos^3\theta.sin^2\theta + 5cos\theta.sin^4\theta + i(5cos^4\theta.sin\theta - 10cos^2\theta.sin^3\theta +sin^5\theta) [/tex]

    Note that :
    [tex] i = \sqrt{-1} [/tex]

    So, we get :
    [tex] cos5\theta = cos^5 \theta - 10cos^3\theta.sin^2\theta + 5cos\theta.sin^4\theta [/tex]

    [tex] cos5\theta = cos^5 \theta - 10cos^3\theta.(1-cos^2\theta) + 5cos\theta.(1 - 2cos^2\theta + cos^4 \theta) [/tex]

    [tex] cos5\theta = cos^5\theta + 10 cos^5 \theta + 5cos^5\theta - 10cos^3\theta - 10cos^3\theta + 5cos\theta [/tex]

    We simply get :
    [tex] cos5\theta = 16 cos^5\theta - 20 cos^3\theta + 5 cos\theta...(1) [/tex] (identity proven)

    We know that
    [tex] x^5 + \frac{1}{x^5} = (x + \frac{1}{x})^5 - 5(x^3 + \frac{1}{x^3}) - 10(x+\frac{1}{x}) [/tex]

    [tex] x^5 + \frac{1}{x^5} = (2cos 12)^5 - 5(8cos^3 12 - 6cos 12) - 10(2cos 12) [/tex]

    [tex] x^5 + \frac{1}{x^5} = 32cos 12 - 40cos^3 12 + 10cos 12... (2)[/tex]

    So from (1) and (2), it's basically :
    [tex] x^5 + \frac{1}{x^5} = 2cos 5.12[/tex]
    [tex] x^5 + \frac{1}{x^5} = 2cos 60[/tex]
    [tex] x^5 + \frac{1}{x^5} = 1[/tex]